User Manual: Local and Parallel Computation Toolbox
for Gaussian Process Regression (GPLP)
Version 1.0

Chiwoo Park

March 13, 2012

Abstract

The GPLP Version 1.0 is the Octave and Matlab implementation
of several fast computation algorithms for efficiently computing
Gaussian process regression with a large amount of data. The
main contribution of this toolbox is two-folds. First, the toolbox
implements several localized Gaussian process regression meth-
ods, which are not included as a part of GPML toolbox version
3.1 developed by Rasmussen and Nickisch. Specifically, GPLP in-
cludes the domain decomposition method (only applicable for spa-
tial datasets), partial independent conditional, localized proba-
bilistic regression, and bagging for Gaussian process regression.
Second, it provides two parallel computation codes of the do-
main decomposition method, which are executable on both of Unix
and Windows operating systems with several open source softwares
(Octave, MatMPI and TORQUE resource manager). Based on the
parallel implementations, the spatial regression (regression in two
dimensional domain) with a huge size of dataset can be handled
in timely manner. This documentation provides several examples
to show how the general users utilize this toolbox. It also includes
how the advanced users could extend the functions of this toolbox.

Contents

1__GPLP Toolboxl 3
[2__Installationl 4
21 Basic Installationf o000 4
2.2 Setting Up a Parallel Computation Environment| 6
13 Usage and Demonstration| 7

8.1 General Usage|

13.2 Case 1: Execution of Domain Decomposition Method with |
| Local Hyperparameters| 8

3.3 Case 2: Execution of Domain Decomposition Method with |

[Global Hyperparameters| 11

3.4 Case 3: Parallel Execution of Domain Decomposition |

| Method in Single-Machine-Multi-Core Environment|. . . . 11
3.5 Case 4: Parallel Execution of Domain Decomposition |
| Method in Multi-Machine Environment] 13
3.6 Case 5: Execution of Partial Independent Conditional] . . 16

3.7 Case 6: Execution of Localized Probabilistic Regression| . 18

3.8 Case 7: Execution of Bagging for Gaussian Process Re- |

| GressIon| e e e 20
4 User Extension of GPLP Toolbox| 21
4.1 Adding a new covariance function|. 21
4.2 Adding a new mesh generation tfunction| 23
6_Conclusionl 26

2 User Manual for GPLP Version 1.0

1 GPLP Toolbox

The GPLP Version 1.0 is a software package written in the Octave and
Matlab to provide the implementation of several localized and parallelized
computation algorithms for computing the Gaussian process regression
problem with massive amount of data. The algorithms implemented in-
cludes the domain decomposition method (Park et al., [2011, DDM), two
parallel computation versions of the domain decomposition methods, par-
tial independent conditional (Snelson and Ghahramanil 2007, PIC), lo-
calized probabilistic regression (Urtasun and Darrell, [2008, LPR), and
bagging for Gaussian process regression (Chen and Renl [2009, BGP).
Most of these methods work in general setting of regression, while DDM
only works with spatial datasets having two dimensional predictor vari-
ables. The GPLP is released under GNU General Public License version
3.0 (GPL-3.0).

The basic concept of the localized computation methods is based on first
decomposing the large amount of data into several smaller chunks and
then learning a localized regression function per chunk. Subsequently,
the localized regression functions are stitched together or summed with
some weightings to form a global regression function. Computing and
learning the localized regression functions is as cheap as O(NM?) in
computation, much cheaper than learning the original regression func-
tion (O(N3)), where M << N is the number of data points in the small
local chunk. In addition, the localized computation methods are more
adaptive to non-stationary change in data. Therefore, the implementa-
tion of the localized methods is helpful to practitioners who want to apply
the Gaussian process regression for large-scale datasets. All of these im-
plementations are tested on both of Octave 3.2.4 and Matlab 7.7.0, so
they should be executable in those versions or later versions. One excep-
tion is the implementation of LPR that only works in Matlab 7.12.0, in
Matlab 7.7.0 or later versions with a compiler supporting mex-compile,
or in Octave 3.2.4 or later versions. For information on the list of compil-
ers to support the mex-compile in Matlab, please refer to http://www.
mathworks.com/support/compilers/previous_releases.htmll

The package also includes two implementation versions of the parallel
computation of the domain decomposition method, shortly PDDM. The
parallel versions have time complexity of O(M?) so they are much more
suitable to handling large datasets. The first implementation of PDDM is
based on the parallel computation toolbox of Matlab, so it is executable
only in Matlab. If users do not buy enough number of Matlab licenses,
they cannot take full advantage of the parallelization using this implemen-
tation. The second implementation of PDDM is based on the open source
implementation of message passing interface standard, MatMPIE| (Kepner},
2001)), and it is executable in both of Octave and Matlab. Since Octave
is licensed with free of charge, PDDM can be executed without limita-
tion in the software license, but only limited by the number of hardware
processors. We also expect that the second implementation becomes a
reference for other researchers or software developers who implement the
parallel computation versions of their algorithms in Matlab or Octave.

The GPML toolbox E| (Rasmussen and Nickisch) 2010) has already been
available for solving the Gaussian process regression, but none of the
localized computation methods is included in the existing toolbox. The

I Available at http://www.1l.mit.edu/mission/isr/matlabmpi/matlabmpi.html
2 Available at http://mloss.org/software/view/263/

User Manual for GPLP Version 1.0 3

http://www.mathworks.com/support/compilers/previous_releases.html
http://www.mathworks.com/support/compilers/previous_releases.html
http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html
http://mloss.org/software/view/263/

2 Installation

2.1 Basic Installation

GPLP should be a nice complement to the GPML toolbox.

This documentation has three sections. Section [2]is about how to install
the GPML toolbox and it also includes how to set up the parallel compu-
tation environment for making PDDM executable with an open-source
job scheduler, TORQUE resource manager El Section [3| describes the gen-
eral usage of the toolbox with several examples for illustrating the usage.
Section [d]is only for advanced users or developers, explaining how to ex-
tend the functions of this package through the addition of new functional
modules.

The GPLP should be installed in an operating system where all of the
following softwares can be installed:

e Any OS-dependent C compiler

e Matlab Version 7.7.0 or later versions, or Octave Version 3.2.4 or
later versions; any Matlab Version 7.x or any Octave Version 3.2.x
might work but GPLP has not been tested on those versions.

e (Only for PDDM) MatMPI Version 1.2

e (Only for PDDM) TORQUE resource manager or any batch workload
manager that works in a distributed computing environment

The softwares listed above are required to execute GPLP. The soft-
wares work in most of the operating systems, so GPLP is basically OS-
independent.

The installation of GPLP consists of three simple steps. First, Matlab
should be properly configured so that it can compile mex files. Matlab
supports the use of a variety of compilers for building MEX-files. Users
can specify which compiler they want to use. For a list of compilers sup-
ported by Matlab, please refer to the link at http://www.mathworks.
com/support/compilers/previous_releases.html. Once you have
verified that you are using a supported C, C+4, or FORTRAN compiler,
you are ready to configure your system to build MEX-files. In order to do
this, run the following command from the MATLAB command prompt:

mex -setup

When you run this command, a series of questions are asked regarding the
location of the C or C++ compiler you would like to use to compile your
code. Answering these questions completes the configuration of Matlab.

Second, the GPLP package files should be extracted from gplp.ver1.0.zip
(Windows) or gplp.verl.0.tgz (Unix). The extracted files are orga-
nized in the following sub-directories:

./ + directory contains all demo files and data files necessary for execut-
ing the demo files.

./doc : directory contains this documentation.

./cov : directory contains all source files defining the covariance functions

for Gaussian process; this folder is simply a copy of the covariance

3 Available at http://www.clusterresources.com/downloads/torque/

User Manual for GPLP Version 1.0

http://www.mathworks.com/support/compilers/previous_releases.html
http://www.mathworks.com/support/compilers/previous_releases.html
http://www.clusterresources.com/downloads/torque/

./mesh :

./ddm :

./pddm-multicore :

./pddm-multinode :
./pic :
./bpg :
./lpr:
.Jetc:

./etc/kdtree :

function implementations provided as a part of the early version of
GPML.

directory contains all source files defining the partitioning schemes
that decompose the large input data into a number of small chunks
for localized computation.

directory contains all source files that implement the sequential
computation version of the domain decomposition method.

directory contains all source files that implement the parallel ver-
sion of the domain decomposition method using Matlab Parallel
Computing Toolbox.

directory contains all source files that implement the parallel version
of the domain decomposition method using MatMPI.

directory contains all source files that implement the partial inde-
pendent conditional.

directory contains all source files that implement the bagging for
Gaussian process regression.

directory contains all source files that implement the localized prob-
abilistic regression.

directory contains the sample configuration files necessary for set-
ting up the computation environment with GPLP.

directory contains the KD-tree package kdtreel.2 B

The last step of the installation is to compile eight mex files in ./mesh,
./cov, and . /etc/kdtree sub-directories. If you are using Matlab, please
check a list of the compilers that support the mex-compilation before
executing the following commands in Matlab prompts:

e If you are using Matlab 7.12.0 or later versions:

./mesh ./mesh/dist.c
./cov ./cov/sq_dist.c

>> mex -outdir
>> mex -outdir

e If you are NOT using Matlab 7.12.0 or later versions:

./mesh ./mesh/dist.c

./cov ./cov/sq_dist.c

./etc/kdtree \
./etc/kdtree/kdtree_ball_query.cpp
./etc/kdtree \
./etc/kdtree/kdtree_build.cpp
./etc/kdtree \
./etc/kdtree/kdtree_delete.cpp
./etc/kdtree \

>> mex -outdir
>> mex -outdir
>> mex -outdir
>> mex -outdir

>> mex -outdir

>> mex -outdir

./etc/kdtree/kdtree_k_nearest_neighbors.cpp

>> mex -outdir ./etc/kdtree \
./etc/kdtree/kdtree_nearest_neighbor.cpp
./etc/kdtree \

./etc/kdtree/kdtree_range_query.cpp

>> mex -outdir

The first two commands are the same for using all versions of Matlab.
But when using a version of Matlab earlier than 7.12.0, you need to
compile six additional mex files, which are a part of kdtreel.2 package.

L kdtreel.2 is Matlab implementation of kd-tree, which is available at http://www.
mathworks.com/matlabcentral/fileexchange/21512

User Manual for GPLP Version 1.0

http://www.mathworks.com/matlabcentral/fileexchange/21512
http://www.mathworks.com/matlabcentral/fileexchange/21512

In Matlab 7.12.0 or later versions, Matlab provides the built-in kdtree
package for our use so that compiling these mex files is no longer needed.
In our testing, the Visual Studio 2008 produced a complied version of
kdtreel.2 package to work with Matlab 7.7.0. It might work with other
versions of Visual Studio and Matlab, but we have not tested it. For
the details of installing Visual Studio 2008, please see http://msdn.
microsoft.com/en-us/library/ms246609 (v=VS.90) .aspx.

In order to compile the mex files in Octave, please use the following
commands in Octave prompts:

octave-3.2.4.exe:1> mkoctfile --mex ./mesh/dist.c
octave-3.2.4.exe:2> mkoctfile --mex ./cov/sq_dist.c
octave-3.2.4.exe:2> mkoctfile --mex \
./etc/kdtree/kdtree_ball_query.cpp
octave-3.2.4.exe:2> mkoctfile --mex \
./etc/kdtree/kdtree_build.cpp
octave-3.2.4.exe:2> mkoctfile --mex \
./etc/kdtree/kdtree_delete.cpp
octave-3.2.4.exe:2> mkoctfile --mex \
./etc/kdtree/kdtree_k_nearest_neighbors.cpp
octave-3.2.4.exe:2> mkoctfile --mex \
./etc/kdtree/kdtree_nearest_neighbor.cpp
octave-3.2.4.exe:2> mkoctfile --mex \
./etc/kdtree/kdtree_range_query.cpp

If the mex-compile is successful, the files having ‘.0’ and ‘.mex’ file exten-
sions (for Octave), or ‘.mexw32’ or ‘.mexw64’ file extension (for Matlab)
will be generated. You might see some warnings during the compilation
but you can ignore the warnings.

2.2 Setting Up a Parallel Computation Environment

This section explains how to set up the parallel computation environment
for executing PDDM with MatMPI and a batch workload manager. Before
following this section, one should make sure that a high performance
cluster of multiple compute nodes has already been built up with a batch
workload manager. After that, the set-up of the parallel computation
environment is in the following two steps:

e Installing MatMPI: The MatMPI is a set of Matlab scripts that im-
plement a subset of the message passing interface (MPI), which
is the de-facto standard for doing point-to-point communications
among parallel programs. The parallel computation version of
the domain decomposition method (PDDM) is partially based on
MatMPI. Thus, before running PDDM, one should install MatMPI
on a directory that is visible to every machine in the cluster. For
the installation,

1. Please download MatlabMPI_v1.2.tar.gz athttp://www.11.
mit.edu/mission/isr/matlabmpi/matlabmpi.htmll

2. Extract the files at the directory where you want to locate
MatMPI, using the following command in Unix:

tar -xzvf MatlabMPI_vl1.2.tar.gz

or using some freewares in Windows to unzip.

6 User Manual for GPLP Version 1.0

http://msdn.microsoft.com/en-us/library/ms246609(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/ms246609(v=VS.90).aspx
http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html
http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html

e Configuring the startup file: one should configure a startup file of
Matlab or Octave so that Matlab or Octave can be aware of the
installation location of MatMPI. The startup file is a file containing
the commands to execute when Matlab or Octave starts. The file’s
name must be startup.m for Matlab and .octaverc for Octave,
and the file should locate either in your home directory or in the
directory where Matlab or Octave is started. Before using GPLP,
the users need to add MatlabMPI/src directory to the Mathlab or
Octave library path by adding the following line in the startup file:

addpath(’ [MatMPI install directory namel]/src’)

The sample startup files are found at ./etc directory with their
names of ‘startup.m’ or ‘.octaverc’.

3 Usage and Demonstration

This section presents the general usage of GPLP and the seven different
usage cases.

3.1 General Usage

Running several different methods in GPLP involves calling the twelve
different functional modules from six different methods, two modules per
each method (one for training and one for prediction). However, the two
modules for every method are in the following common forms:

[model, train, test, mu, s2, mse, nlpd]
= training_module_name(x, y, paraml, param2,..., Xs, ys)
[mu,s2, elapsed] = prediction_module_name(xs, model)

training module name : This function trains the Gaussian process regression model with
training data x, y, and it returns model output parameter as the
learned regression model. There is a naming convention for this
function; the name should start with the method short name and
should end with ‘GP’. For example, if the method is the domain de-
composition method, the method short name is ‘ddm’ so the name
of the training function should be ‘ddmGP’. The following argu-
ments can be used in training module_name:

e x: n training inputs (n x d matrix)
e y: n training targets (a column vector of length n)

e paramx (e.g. paraml, param2,....): any additional parameters
necessary for training. The number of parameters can be more
than or equal to one. Each paramx is a structure data type in
Matlab, so it has multiple parameter elements. The contents
in each paramx varies depending on the method used. For
more details, please refer to the examples presented in Section

through

e xs: (Optional) ns test inputs (ns X d matrix); if this argu-
ment is specified, training module_name function will per-
form the prediction on the test inputs using the trained regres-
sion model and the function will return the predictive mean
mu and the predictive variance s2.

e ys: (Optional) ns test targets (a column vector of length ns):
if this argument and xs are specified, training_module_name

User Manual for GPLP Version 1.0 7

function will perform the prediction on the test inputs xs using
the trained regression model, and it will compute and return
the mean squared error mse and the negative log predictive
density nlpd.

model: trained regression model

train: time elapsed for training

test: time elapsed for testing; only available if xs is specified
mu: predictive mean at xs; only available if xs is specified

s2: predictive variance at xs; only available if xs is specified

mse: mean squared error; only available if xs and ys are spec-
ified

nlpd: negative log predictive density defined as

ns

1 (ys; —mu;)? 1
1pd = — § W T 2 60(2782;),
nip ns ; 282; + 2 0g(2ms2;)

where ys;,mu; and s2; are the ith element of ys,mu and s2
respectively. nlpd is only available when xs and ys are speci-
fied.

predictionmodule name : This function uses the trained regression model, which can be ob-
tained by calling training_module_name, for performing the pre-
diction at test inputs xs. The name of prediction module name
is always ‘short method name’ + ‘_pred’ (+ postfix). For example,
if the method name is the domain decomposition method and we
execute its parallel version in multi-core environment, the function
named ‘ddm_pred_mc’ should be called. The following arguments
can be used in prediction_module_name:

model: trained regression model
xs: ns test inputs (ns X d matrix)
mu: predictive mean at xs

s2: predictive variance at xs

elalpsed: time elapsed for prediction

3.2 Case 1: Execution of Domain Decomposition Method with Local Hyperparameters

This example illustrates applying the domain decomposition method for
predicting the total column of ozone at unobserved locations.

The dataset used here contains data collected by NIMBUS-7/TOMS
satellite to measure the total column of ozone over the globe on Oct
1 1988. This set consists of 48,331 measurements, and each measurement
consists of latitude, longitude and the total column of ozone value at the
latitude / longitude. The dataset files are entitled with ozone_x.csv
and ozone_y.csv in ./ directory. We first load the dataset files into the
memory space using the following command:

clc
clear

% add

library path

User Manual for GPLP Version 1.0

5 addpath('./ddm")
6 addpath('./mesh")
7 addpath('./cov")
8 addpath('./1lik")
9 addpath('./etc")

10

o

11 % load data & subsample to a training dataset

12 X = csvread('ozone_x.csv');

13 y = csvread('ozone_y.csv');

14 [dum, I] = sort(rand(size(x,1),1)); clear dum;

15 t_idx ones (size(x,1),1); t_idx(I(l:round(size(x,1)
* 0.1) = 0;

))
16 t_idx = logical(t_idx);
17
18 xs = x("t-idx, :); ys = y("t-idx, :);
19 x = x(t_.idx, :); y = y(t_-idx, :);

The line 5 through 8 is for loading the common library files to execute
the domain decomposition method. The line 11 through 18 load two csv
files into x and y variables, and the lines split the variables into a training
dataset (90% of the whole dataset) and a test dataset (10%).

Before training the Gaussian process regression model with the domain
decomposition method, one should define several parameters for the train-
ing module. The domain decomposition method has two groups of param-
eters: domain decomposition parameter group dd_param and covariance
function parameter group cv_param. Each parameter group is typed as
a Matlab structure data-type, containing the following sub-parameter
values.

e dd_param.meshfunc: the string name of the function used to parti-
tion the big training dataset into many smaller chunks (by decom-
posing the domain of regression function into small subdomains and
then by splitting the training data points according to which sub-
domain they belong to). Such function is called a mesh generation
function. The mesh generation functions available are rectMesh
and rectGrid. Users can define their own mesh generation func-
tion (please refer to Section .

e dd_param.mparam: input parameters for meshfunc (e.g. the size of
subdomains)

e dd_param.p: degrees of freedom for representing each boundary
function

e dd_param.q: the number of locations to check the continuity of
predictions on a boundary

e cv_param.covfunc: prior covariance function. There are many co-
variance functions available, all start with the three letters cov and
reside in the ./cov directory. Users can write their own covariance
function (please refer to Section [4.1)).

e cv_param.local: (optional) 1: use the local hyperparameters; de-
fault, 0: use the global one

e cv_param.frachyper: (optional) the fraction of the training
dataset used for learning the hyperparameters (range: 0.0 - 1.0,
default: 1.0)

e cv_param.nIter: (optional) the maximum number of iterations for
optimizing the hyperparameters (default: 50)

User Manual for GPLP Version 1.0 9

e cv_param.logtheta: (optional) used as hyperparameters of the
prior covariance function. If it is specified, the hyperparameter
learning step is skipped.

e cv_param.logthetaO: (optional) initial guess of hyperparameters
of the prior covariance function

In this example, we use rectGrid as the mesh generation function such
that each mesh is sized as 14-by-21 grid points. The degree of freedom for
the boundary function and the number of locations to check the boundary
continuity are set to three. We use the sum of the squared exponential
covariance and the noise covariance as our prior covariance function and
let the hyperparameters of the function be learned using only 60% of the
training dataset with some initial guess logtheta0. The corresponding
source code for the parameter specification is as follows:

1
2 % set the input parameters regarding domain decomposition
3 dd-param.meshfunc = 'rectGrid'; % mesh generation function
4 dd_param.mparam = [14 21]; % mesh generation
function parameters
5 % (mesh size)
6 dd-param.p = 3; % degree of freedom for
boundary element
7 dd.param.g = 3; % the number of
locations to check the
8 % continuity of

prediction over boundary

10 set the input parameters regarding prior covariance function

o° o

11 cv_param.covfunc: prior covariance function = squared
covariance function
o

12 % + noise covariance function

13 cv_param.covfunc = {'covSum', {'covSEard', 'covNoise'}};

14 d = size(x, 2);

15 logthetal = Oxones(d+2,1); % starting values of log

hyperparameters:

16 % log
(\lambda-1, .., \lambda-d,
rho)

17 % for square covariance
function

18 logthetal (d+2) = —1.15; % starting value for log(noise

std dev): log

19 % sigma”2 for noise covariance

function
20 cv._param.logthetaO = logthetaOl;
21 % fraction of training data used for learning hyperparameters
22 cv_param.frachyper = 0.6;

Last, we call the main training module named ddmGP to train the Gaussian
process regression model based on the domain decomposition method.
Two modes are possible — training or prediction: if no test input is
provided, the training module fits the hyperparameters of the covariance
function and does some pre-computation necessary for prediction. If test
inputs are given, then the predictive mean and variance at the test inputs
are returned. Usage:

training: [model train test]
= ddmGP(x,y, dd_param, cv_param);
prediction: [model train test mu s2]

= ddmGP(x,y, dd_param, cv_param, Xs);
or: [model train test mu s2 mse nlpd]

10

User Manual for GPLP Version 1.0

= ddmGP(x,y, dd_param, cv_param, Xs, ys);

In this example, we use the third mode to produce the predictive mean,
variance, mean squared error and the negative log predictive density as
follows:

o

1 % execute the main logic

2 [model, train, test, mu, s2, mse, nlpd] = ddmGP (x, vy,
dd_param, cv_param, Xxs, VYS);

3 fprintf('training time = $—8.4f seconds\n',train);

4 fprintf('test time = $—8.4f Seconds\n‘,test);

(
fprintf('mse = %$—8.4f\n',mse);
fprintf ('nlpd = %-8.4f\n',nlpd);

o o

The code of this example can be found at the ./ directory (please find
demo_ddm.m file). The execution of the example will print the time
elapsed by training, the time elapsed by testing, the mean squared error
and the negative log predictive density in the program console as the
summary result.

3.3 Case 2: Execution of Domain Decomposition Method with Global Hyperparameters

This example shows how to solve the same problem as Case 1 in the
previous section with the hyperparameters learned globally, while the
hyperparameter values were learned separately for each mesh in Case 1.
To allow the training module to know that the hyperparameters should
be learned globally, one should specify the cv_param.local parameter
value as follows:

cv_param.local = O;

The default value of the parameter is 1 so if it is not given, the training
module learns the hyperparameters for each mesh.

The rest of the example code is the same as Case 1, available as
demo_ddm_global.m at ./ directory. The execution of the example
will print the time elapsed by training, the time elapsed by testing,
the mean squared error and the negative log predictive density in the
program console as the summary result. The mean squared error of this
example is higher than that of Case 1 example because the hyperpa-
rameters learned globally in this example do not reflect underlying local
variabilities in the dataset.

3.4 Case 3: Parallel Execution of Domain Decomposition Method in
Single-Machine-Multi-Core Environment

This example illustrates the use of a parallel computation version of the
domain decomposition method for handling larger datasets in a multi-
core machine. Note that this example works only with Matlab, not
Octave, because the multi-core version of DDM is partially based on
the Matlab Parallel Computing Toolbox. In this example, we use two
different datasets: one for a training data and the other for a test data.
The dataset for training is the remote sensing data collected by NIMBUS-
7/TOMS satellite to measure the total column of ozone over the globe on
Oct 1 1988. The dataset is much closer to raw satellite data than what
was used in Case 1, and the number of the measurements is 182,591, which
is much larger than the dataset used in Case 1. The files storing the
dataset are ozone_L2_x.csv (training input file) and ozone_L2_y.csv
(training target file) and both are located in ./ directory.

User Manual for GPLP Version 1.0 11

There is a separate test dataset, which is the total column of ozone val-
ues measured at 89 ground stations. The files storing the test dataset are
ozone_gr_x.csv (ground station location) and ozone_gr_y.csv (mea-
surement) in ./ directory. We will use the training dataset to learn
the Gaussian process regression model and will perform the prediction at
where the ground stations locate. Finally, we will compare the prediction
to the direct measurement from the ground stations. Such comparison is
widely used in geo-statistics to verify the measurements of ground station
using satellite data or vice versa.

We first need to set up the library path and to initiate the Matlab process
pool for parallel computations, using the commands in the bottom box.
In line 11, we initiated eight processes in the process pool, which is the
maximum number allowed for the local scheduler (the number is four
if you use Matlab Version 7.7.0 or the older version). Please note that
adding ./pddm_multicore in the library path (line 5) is necessary.

1 % add library path

2 addpath('./pddm—multicore')
3 addpath('./ddm")

4 addpath('./mesh")

5 addpath('./cov")

6 addpath('./1ik")

7 addpath('./etc")

8

9 % open pool of MATLAB sessions for parallel computation
10 1if matlabpool ('size') ==

11 matlabpool open 8

12 end

Next, we load the four data files for the training and test datasets.

1 % load data & subsample to a training dataset
2 x = csvread('ozone L2 x.csv');

3 y = csvread('ozone_L2_.y.csv');

4 xs = csvread('ozone_gr.x.csv');

5 ys = csvread('ozone._gr.y.csv');

Third, we define meshes for decomposing the large chunk of the train-
ing data into many small chunks based on the spatial locations of data.
Different from Case 1 and 2, we use rectMesh as the mesh generation
function instead of rectGrid. The rectMesh is more appropriate to
decomposing spatially irregular data, while the rectGrid is more appro-
priate for spatially regular data (e.g. gridded data). The remote sensing
data used in this example is spatially irregular so we use rectMesh func-
tion, setting its parameters such that it produces 30-by-20 meshes totally.
The source code for meshing is as follows:

1 % set the input parameters regarding domain decomposition

2 dd-param.meshfunc = 'rectMesh'; $mesh generation function

3 dd_param.mparam = [30 201; $mesh generation
function parameters

4 % (the total number of

meshes per each

5 % spatial dimension)

6 dd._param.p = 2; %degree of freedom for
boundary element

7 dd.param.g = 2; $the number of locations

to check the

12

User Manual for GPLP Version 1.0

8 $continuity of
prediction over boundary

We also need to specify the covariance function parameters for Gaussian
process. We can do that in the same way as what we did in Case 1.

o

1 % set the input parameters regarding prior covariance function

2 cv_param.covfunc = {'covSum', {'covSEard', 'covNoise'}}; %
prior covariance function

3 d = size(x, 2);

4 logthetal = Oxones (d+2,1); % starting values
of log hyperparameters: log (\lambda.1l,..,\lambda.d,
rho) for Square Covariance Function

5 logthetal (d+2) = —1.15; % starting value

for log(noise std dev): log sigma”2 for Noise
Covariance Function

6 cv-param.logtheta0 = logthetal;

7 cv_param.frachyper = 0.2; % fraction of
training data used for learning hyperparameters

Finally, we train the Gaussian process regression model using the multi-
core version of the domain decomposition method. The name of the
training module is ddmGP_mc. To illustrate how to use the trained model
for future prediction, we called the prediction module separately from
the training module. The function name of the prediction module is

ddm_pred_mc.

1 % train the GP model

2 [model, train] = ddmGP._mc (x, y, dd_.param, cv_param);
3 fprintf('training time = %$—8.4f seconds\n',train);

4

5 % test the model

6 [mu, s2, test] = ddm_pred-mc (xs, model);

7

8 %compute MSE & NLPD

9 ns = size(xs,1l);

10 se = (ys — mu)' x (ys — mu);

11 nlpd = sum(0.5* (log (2+pixs2) + ((ys — mu)."2)./s2));
12 mse = se / ns;

13 nlpd = nlpd / ns;

15 fprintf('training time = %$—8.4f Seconds\n',train);
16 fprintf('test time = $—8.4f seconds\n‘,test);

17 fprintf('mse = %—8.4f\n',mse);

18 fprintf ('nlpd = %78.4f\n‘,nlpd);

The last four lines print out the summary result. The source code file for
this example is demo_ddm_multicore.m located at ./ directory.

3.5 Case 4: Parallel Execution of Domain Decomposition Method in Multi-Machine
Environment

This example illustrates how to execute the domain decomposition
method in a high performance cluster of multiple machines (HPC).
Before running this example, please make sure that MatMPI is properly
installed as described in Section We also assume that the cluster of
the user system uses the TDRQUEE| resource manager as a batch workload

2 The TORQUE resource manager is a open-source batch job scheduler and a work-
load manager that distributes parallel computation tasks over computation nodes
in parallel computing environment. The resource manager is an open-source imple-
mentation of a de-facto standard interface for the batch job scheduler, OpenPBS,

User Manual for GPLP Version 1.0 13

manager, but this does not imply that the implementation of the domain
decomposition method works only with the TORQUE resource manager.
Indeed, it is compatible with every batch workload manager installed in
the user system.

To execute the domain decomposition method in HPC, users need to
write three script files: (1) a PBS (Portable Batch System) script file for
submitting a parallel job to TORQUE resource manager, (2) a Matlab or
Octave script file for initiating the MatMPI over multiple machines, and
(3) aMatlab or Octave script file for describing the job to be performed.

The example PBS script file is at ./ directory with name pbs_multinode.pbs.
The example file is launching Octave to execute the domain decomposi-
tion method as follows.

#!/bin/sh

#PBS -1 walltime=00:40:00
#PBS -q iamcs

#PBS -1 nodes=2:ppn=8
#PBS -j oe

#PBS -N octavempi

Nprocs=16
source ~/bashrc

go to your working directory
cd /home/chiwoo.park/pddm

copy the node list file to your working directory
cp $PBS_NODEFILE ./machines.m

run the program

time /apps/octave-3.2.4/bin/octave -q < main_multinode.m >& ddm.out

time /apps/matlab/R2010b/bin/matlab -nojvm -nosplash -nodisplay -nodes!
#it# main_multinode.m >& ddm.out

In the PBS script, the line 2 to 6 are for defining PBS job script options.
The description about the options is as follows:

o #PBS -N jobname: Assign a name to job

e #PBS -1 walltime=runtime: Set wallclock time limit (format =
hh:mm:ss)

#PBS -q queue name: Specify job queue to be used

#PBS -1 nodes=node number:ppn=process per node: Specify the
total number of nodes (machines) used and the total number of
processes evoked per node.

e #PBS -k oe: Keep the standard output file and error log file in
your home directory while the job runs.

In this example, we are invoking eight processes in a single machine node.
Next, the PBS script has a couple of lines for specifying the environment

so it is widely used as a job scheduler for building parallel grids. For this reason,
this section explains how to set up the environment when we use TORQUE resource
manager as the batch job scheduler, but it does not imply that TORQUE resource
manager is the only option for the batch job scheduler.

14

User Manual for GPLP Version 1.0

variables of MatMPI (line 8-11), and the script changes the working direc-
tory (line 14). The PBS script is then storing $PBS_NODEFILE environ-
ment variable into ./machines.m file so that we later see which machines
are involved in the parallel job (line 17). Finally, the script let Octave
execute main_multinode.m script file, recording the output into ddm. out
file.

The main_multinode.m script file is the Matlab (compatible with
Octave) script file for initiating the MatMPI over multiple machines.
The file packaged in GPLP is written such that it internally executes
demo_ddm_multinode.m over multiple machines. The main_multinode.m
file should look as follows:

addpath ('./pddm—multinode") ;

$This script is for running main.m (matlabmpi) with batch mode
% Read the node list file into a array
machines = read-nodes ('machines.m');

% Get the length of node list
node_num = size (machines, 2);

© 0 N o U A W N e

[
S}

% Clean up matlabmpi
MatMPI_ Delete_all

==
(-

o

% Run your porgram
eval (MPI_Run ('demo_.ddm_multinode', node_num, machines));

=
~ow

The script demo_ddm_multinode.m is the job description file for this ex-
ample. If users want to execute a different job, they must write their own
Matlab or Octave script file for their purpose. After that, they should
change the last line of main_multinode.m such that the newly written
script file is executed as follows:

‘ 1 eval (MPI_Run ('your script file name',node_num, machines));

The job description script in this example, demo_ddm_multinode.m, per-
forms the exactly same job as what we did in Case 3 (, but based on
MatMPI). First, let the MatMPI channel connect every machines involved
in the parallel job as follows:

global comm; % communication channel
global my_rank

R N R

% Initialize MPI (Message Passing Interface) for MATLAB or ...
Octave.

MPI_Init;

% Create communicator.

comm = MPI_COMM_WORLD;

© 0 N o

o

10 % Get rank.
11 my-rank = MPI_Comm_rank (comm) ;

Next, we should load the data files and perform the subsampling on the
training dataset such that only a small sample will be used for learning
the covariance hyperparameters. Please note that the following function
should be used to generate the subsamples, instead of directly calling
Matlab sampling functions (e.g randi):

User Manual for GPLP Version 1.0 15

[indices] = gen_random_subset (N, fracs);

The function generates the subsample of {1,2,...,N} with size fracsx
N, where fracs is a value between 0 and 1. If fracs parameter is a list
of values, the function generates as many subsamples as the size of the
list. In this example, we will use 20% of the training dataset for learning
the hyperparameters so we have the following code:

o B N

10
11

% load data
disp('loading data files...');

x = csvread('ozone_ L2 _x.csv');
y = csvread('ozone_L2_.y.csv');
xs = csvread('ozone_gr.x.csv');
ys = csvread('ozone_gr_.y.csv');

% Subsample the training dataset for efficient
hyperparameter learning

% Make sure that every node has the same training/test
dataset as well as

% the same subsample used for the hyperparameter learning.

disp('generating a random subset used for learning
hyperparameters...');

The specification of dd_param and cv_param is the same as that of Case
3 except specifying an additional parameter cv_param.idx as:

1

cv_param.idx = idx; % the row indices of the training
dataset, which corresponds to a subset of the training
dataset used for learning the hyperparameters

Last, we call ddmGP_mn, which is the main training module for the MatMPI-
based implementation of the domain decomposition method. We also
need to close the MatMPI channel.

[IR VR

<

10
11
12
13
14
15
16
17

cv_param.idx = idx;

disp('starting the main logic...');
% execute the main logic
if my.-rank ==

[model, train, test, mu, s2, mse, nlpd] = ddmGP_mn (x,
y, dd_-param, cv_param, Xs, VYS);
fprintf ('training time = %—8.4f seconds\n',train);

fprintf ('test time = %$—8.4f seconds\n',test);
fprintf('mse = %$—8.4f\n',mse);
fprintf ('nlpd = %78.4f\n',nlpd);
else
ddmGP._mn (x, y, dd-param, cv.param, Xs, YS);
end

% Finalize Matlab MPI.
MPI_Finalize;
disp ('SUCCESS') ;

The last script file of this example can be found at the ./ directory (please
find demo_ddm_multinode.m file).

3.6 Case 5: Execution of Partial Independent Conditional

This example shows how to run the partial independent conditional (PIC)
method with the ozone dataset used in Case 1. The code for loading the
data files is in the same way as Case 1.

16

User Manual for GPLP Version 1.0

Before training the Gaussian process regression model with PIC, one
should add ./pic to the library path and needs to define several pa-
rameters for the training module. The PIC has a group of parameters:
param. The parameter group is typed as a Matlab structure data-type,
containing the following sub-parameter values.

e param.M: the number of pseudo inputs
e param.X: the number of local regions

e param.logthetaO: initial guess of hyperparameters of the prior
covariance function

e param.frachyper: (optional) the fraction of the training dataset
used for learning the hyperparameters (range: 0.0 - 1.0, default:
1.0)

e param.nlter: (optional) the maximum number of iterations for
optimizing the hyperparameters (default: 50)

In this example, we learn PIC with 200 pseudo inputs and 300 local
regions. The sum of the squared exponential covariance and the noise
covariance is only allowed for the prior covariance function in PIC so we
do not need to specify the covariance function. We let the hyperparam-
eters of the function be learned using only 60% of the training dataset
with some initial guess logtheta0. The corresponding source code for
the parameter specification is as follows:

1 % starting values of log hyperparameters:

2 logtheta0O(l:d,1) = —2%log((max(x)—min(x))"'/2); % log ...
1/ (lengthscales) "2

3 logthetaO(d+1,1) = log(var(y,1l)); % log size

4 logthetaO(d+2,1) = log(var(y,1l)/4); % log noise

5 param.logthetal0 = logthetal;

6

7 % fraction of training data used for learning hyperparameters

8 param.frachyper = 0.6;

9 param.M = 200;

10 param.K = 300;

Last, we call the main training module named picGP to train the Gaus-
sian process regression model based on PIC. Two modes are possible:
training or prediction: if no test input is provided, the training module
fits the hyperparameters of the covariance function and does some pre-
computation necessary for prediction. If test inputs are given, then the
predictive mean and variance at the test inputs are returned. Usage:

training: [model train test]
= picGP(x,y, param);
prediction: [model train test mu s2]

= picGP(x,y, param, xs);
or: [model train test mu s2 mse nlpd]
= picGP(x,y, param, xs, ys);

In this example, we use the third mode to produce the predictive mean,
variance, mean squared error and the negative log predictive density as
follows:

1 % execute the main logic
[model, train, test, mu, s2, mse, nlpd] = picGP(x, vy,
param, Xs, yS);

2

User Manual for GPLP Version 1.0 17

3 fprintf('training time = %$—8.4f seconds\n',train);
4 fprintf('test time = $—8.4f seconds\n',test);

5 fprintf('mse = $—8.4f\n',mse);

¢ fprintf('nlpd = %78.4f\n‘,nlpd) ;

The code of this example can be found at the ./ directory (please find
demo_pic.m file). The execution of the example will print the time
elapsed by training, the time elapsed by testing, the mean squared error
and the negative log predictive density in the program console as the
summary result.

3.7 Case 6: Execution of Localized Probabilistic Regression

This example shows how to run the localized probabilistic regression
(LPR) method with the ozone dataset used in Case 1. The code for
loading the data files is in the same way as Case 1.

Before training the Gaussian process regression model with LPR, one
should add ./lpr to the library path and needs to define several pa-
rameters for the training module. The LPR has a group of parameters:
param. The parameter group is typed as a Matlab structure data-type,
containing the following sub-parameter values.

e param.T: the number of local experts used for prediction; the pre-
diction at a test input is obtained by taking the weighted average
of param.T local expert’s predictions.

e param.R: the number of random sites chosen for learning local hy-
perparameters; if a test input is given, the LPR dynamically gener-
ates param.T local experts which are closest to the test input. Since
learning hyperparameters for the dynamically chosen local experts
per test input is too computationally expensive, the LPR randomly
chooses param.R sites so that they distribute uniformly over the
whole input space, and it learns one set of hyperparameters using
the neighborhood of each random site. When a test input is given,
the LPR finds the random site closest to the test input and uses
the hyperparameter learned at the chosen random site.

e param.S: the number of training inputs allocated to each local ex-
pert

e cv_param.covfunc: prior covariance function. There are many co-
variance functions available, all start with the three letters cov and
reside in the ./cov directory. Users can write their own covariance
function (please refer to Section [4.1)).

e param.logthetaO: initial guess of hyperparameters of the prior
covariance function

e param.frachyper: (optional) the fraction of the training dataset
used for learning the hyperparameters (range: 0.0 - 1.0, default:
1.0)

e param.nIter: (optional) the maximum number of iterations for
optimizing the hyperparameters (default: 50)

In this example, we learn LPR with 20 local experts, 200 training in-
puts allocated per each expert and 1000 random sites chosen for learn-
ing hyperparameters. The sum of the squared exponential covariance
and the noise covariance is used. We let the hyperparameters of the
function be learned using only 50% of the training dataset (i.e. set

18

User Manual for GPLP Version 1.0

param.frachyper to its default value), and the hyperparameters are
optimized with logtheta0 as the initial values through maximally 100
iterations of the optimization. The corresponding source code for the
parameter specification is as follows:

2 % set the input parameters

3 param.covfunc = {'covSum', {'covSEard', 'covNoise'}}; %
prior covariance function

4 d = size(x, 2);

5 logthetal = O*ones(d+2,1); % starting values of
log hyperparameters:

6 % log
(\lambda.1,..,\lambda.d, rho) for

7% Square Covariance
Function

8 logthetal (d+2) = —1.15; % starting value for log(noise
std dev) :

9 %$log sigma”2 for Noise

Covariance Function
10 param.logthetaO0 = logthetal;
11 param.T = 20; % number of local experts
12 param.R = 1000; % number of random sites chosen
for local

o

13 hyperparameter learning

o
s
o
5

14 param.S = 200; number of trainig inputs
allocated to each local
15 % expert

Last, we call the main training module named 1prGP to train the Gaus-
sian process regression model based on LPR. Two modes are possible:
training or prediction: if no test input is provided, the training module
fits the hyperparameters of the covariance function and does some pre-
computation necessary for prediction. If test inputs are given, then the
predictive mean and variance at the test inputs are returned. Usage:

training: [model train test]
= 1prGP(x,y, param);
prediction: [model train test mu s2]

= 1lprGP(x,y, param, xs);
or: [model train test mu s2 mse nlpd]
= 1prGP(x,y, param, xs, ys);

In this example, we use the third mode to produce the predictive mean,
variance, mean squared error and the negative log predictive density as

follows:
1
2 % execute the main logic
3 [model, train, test, mu, s2, mse, nlpd] = lprGP(x, vy,
param, XS, yS);
4 fprintf('training time = %—8.4f seconds\n',train);
5 fprintf('test time = $—8.4f seconds\n',test);
6 fprintf('mse = %—8.4f\n',mse);

The code of this example can be found at the ./ directory (please find
demo_lpr.m file). The execution of the example will print the time
elapsed by training, the time elapsed by testing, the mean squared error
and the negative log predictive density in the program console as the
summary result.

User Manual for GPLP Version 1.0 19

3.8 Case 7: Execution of Bagging for Gaussian Process Regression

This example shows how to run the bagging method for Gaussian process
regression (BGP) with the ozone dataset used in Case 1. The code for
loading the data files is in the same way as Case 1.

Before training the Gaussian process regression model with BGP, one
should add ./bgp to the library path and needs to define several pa-
rameters for the training module. The BGP has a group of parameters:
param. The parameter group is typed as a Matlab structure data-type,
containing the following sub-parameter values.

e param.M: the size of each bagging sample
e param.X: the total number of bagging samples

e cv_param.covfunc: prior covariance function. There are many co-
variance functions available, all start with the three letters cov and
reside in the ./cov directory. Users can write their own covariance
function (please refer to Section [4.1]).

e param.logthetaO: initial guess of hyperparameters of the prior
covariance function

e param.frachyper: (optional) the fraction of the training dataset
used for learning the hyperparameters (range: 0.0 - 1.0, default:
1.0)

e param.nlter: (optional) the maximum number of iterations for
optimizing the hyperparameters (default: 50)

In this example, we learn BGP with 40 bagging samples and 300 training
inputs in each bagging sample. The sum of the squared exponential
covariance and the noise covariance is used. We let the hyperparameters
of the function be learned using only 50% of the training dataset (i.e.
set param.frachyper to its default value), and the hyperparameters are
optimized with logtheta0 as the initial values through maximally 100
iterations of the optimization. The corresponding source code for the
parameter specification is as follows:

o

2 % set the input parameters

3 param.covfunc = {'covSum', {'covSEard', 'covNoise'}}; % ...
prior covariance function

4 d = size(x, 2);

5 logthetal = Oxones(d+2,1); % starting values of ...
log hyperparameters:

6 % log ...
(\lambda.1, .., \lambda_d, rho) for

7% Square Covariance ...
Function

8 logthetal (d+2) = —1.15; % starting value for log(noise ...
std dev):

9 $log sigma”2 for Noise ...

Covariance Function
10 param.logthetaO = logthetaO;

11 param.frachyper = 0.5; % fraction of training data used ...
for learning

12 % hyperparameters

13 param.M = 300;

Last, we call the main training module named baggingGP to train the
Gaussian process regression model based on BGP. Two modes are possi-

20

User Manual for GPLP Version 1.0

ble: training or prediction: if no test input is provided, the training mod-
ule fits the hyperparameters of the covariance function and does some
pre-computation necessary for prediction. If test inputs are given, then
the predictive mean and variance at the test inputs are returned. Usage:

training: [model train test]
= baggingGP(x,y, param);
prediction: [model train test mu s2]

= baggingGP(x,y, param, xs);
or: [model train test mu s2 mse nlpd]
= baggingGP(x,y, param, xs, ys);

In this example, we use the third mode to produce the predictive mean,
variance, mean squared error and the negative log predictive density as
follows:

o

2 % execute the main logic
3 [model, train, test, mu, s2, mse, nlpd] = baggingGP (x, vy,
param, XS, yS);
4 fprintf('training time %$—8.4f seconds\n',train);
fprintf ('test time = $—8.4f Seconds\n‘,test);
6 fprintf('mse = %—8.4f\n',mse);

The code of this example can be found at the ./ directory (please find
demo_bgp.m file). The execution of the example will print the time
elapsed by training, the time elapsed by testing, the mean squared error
and the negative log predictive density in the program console as the
summary result.

4 User Extension of GPLP Toolbox

The intended reader of this section is advanced users of GPLP or software
developers who want to extend the basic functions of GPLP. The GPLP
toolbox supports the package extension interfaces for users to add a new
covariance function or to add a new mesh generation function. The inter-
face to add a new covariance function is necessary because the flexibility
and property of a covariance function determines the quality of the so-
lution of the Gaussian process regression. In addition, for the localized
computation methods, specifying the mesh generation function to define
the appropriate local regions can be very critical in terms of computation
efficiency and accuracy. The next two subsections are the ‘How-to’ style
documentation of the package extension interfaces for software develop-
ers.

4.1 Adding a new covariance function

A Gaussian process f is a stochastic process {f(x) : x € X'}, any fi-
nite samples of which will be distributed as multivariate Gaussian. The
Gaussian process is fully defined by the pointwise mean function and the
covariance function. In solving the Gaussian process regression, the mean
function is usually assumed to be zero (simple kriging) and the choice of
the covariance function is important to the quality of solution. The GPLP
allows users to use various parametric covariance functions which were
originally available at the early version of GPML. In addition, the GPLP
provides the software interface to allow users to define their own covari-
ance functions. This section will present how to define a new covariance
function.

User Manual for GPLP Version 1.0 21

A covariance function is a (positive definite) scalar function K : X x X —
R, which maps a pair of two domain variables to the covariance between
the two realizations of f at the two domain variables: for x,z € X,

K(x,2) = Cov(f (=), f(2))-

The covariance function K is mostly defined as a parametric form that
depends on a set of hyperparameters 8. For example, the anisotropic
version of the squared exponential covariance function is defined as:

1& Tq— 2 2
Kie(x,2;0) = 92D+1 exp {—2 Z <6dd> } ,
d=1
where D is the dimension of X, x = (z1,...,zp) and @ = (04,...,0p,0p11)".

If you want to define a new covariance function for GPLP, you should write
a new Matlab function which supports all of the following four modes:

[H] = covName ()
[A] = covName (loghyper, x)
[R] = covName(loghyper, x, i)

[v, B] = covName(loghyper, x, z)

e H is the total number of hyperparameters required by evaluating
the covariance function; it is a string formatted number including a
special character ‘D’, which is the dimension of the domain variable
(i.e. dimension of X). For example, if ‘(D+1)’ is returned as the
value of H, the number of the hyperparameters required is the
dimension (of the domain variable) plus one.

e loghyper is the H-by-1 column vector of log(6y),log(62), . .., log(0g).
e x is the m-by-D matrix of m domain variables.
e z is the n-by-D matrix of n domain variables.

e A is the m-by-m covariance matrix with A;; as the covariance value
between the ith and jth domain variables in x.

e i isthe integer index pointing an element in loghyper, with respect
to which the partial derivative of the training covariance matrix (A)
is computed.

e R is the m-by-m matrix of partial derivatives of the training covari-
ance matrix (A) with respect to the ith element of loghyper.

e v is the n-dimensional column vector of the self covariances for z,
i.e. v; is the covariance between z; and z;.

e B is the m-by-n matrix of cross covariances between x and z.

For example, we present how to define the anisotropic version of the
squared exponential covariance function. We named the function
covSEard. The following line is the first line of the function defini-
tion:

1 function [A, B] = covSEard(loghyper, x, z)

The function should return string ‘(D+1)’ if there is no input according
to the convention of the covariance function (first mode).

User Manual for GPLP Version 1.0

o

1 if nargin == 0, A = '(D+1)'; return; end % report
number of parameters

If there are one or more inputs, the function computes the several types
of covariance functions or their partial derivatives:

1 persistent K;
2
3 [n D] = size(x);
4 ell = exp(loghyper(1:D)); %
characteristic length scale
5 sf2 = exp(2+xloghyper (D+1));
% signal variance
6
7 1f nargin ==
8 K = sf2xexp(—sqg-dist (diag(l./ell)xx")/2);
9 A = K;
10 elseif nargout == % compute
test set covariances
11 A = sf2xones(size(z,1),1);
12 B = sf2xexp(—sqg-dist (diag(l./ell)*x',diag(l./ell)xz")/2);
13 else S ...
compute derivative matrix
14
15 % check for correct dimension of the previously
calculated kernel matrix
16 if any(size (K) "=n)
17 K = sf2xexp(—sqg-dist (diag(l./ell)xx")/2);
18 end
19
20 if z <=D %
length scale parameters
21 A = K.xsqg.dist (x(:,z)"'/ell(z));
22 else
% magnitude parameter
23 A = 2xK;
24 clear K;
25 end
26 end

The line 8 and 9 computes the m-by-m covariance matrix between x and
x, and the line 11 and 12 computes the self covariances for z, and the
cross covariance matrix between x and z. The remaining lines are for
computing the partial derivative of the training covariance matrix.

The example file explained is covSEard.m at ./cov directory. Additional
explanation about ‘How to use covariance functions’ can be found at
covFunctions.m at the same directory.

4.2 Adding a new mesh generation function

This section describes how to define a new mesh generation function for
the use of the domain decomposition method.

The domain decomposition method partitions the domain of Gaussian
process into polygonal subdomains, and formulates a small Gaussian
process regression problem for each subdomain. The mesh generation
function (mgf) defines the polygonal subdomains and returns the struc-
ture of the polygonal subdomains. We first define some terminology used
for explaining the structure. The structure is defined by three sets of
sub-structures as follows:

e subdomain: this structure defines the interior part of a subdomain.

User Manual for GPLP Version 1.0 23

subdomain

vertex

intf_3 sd_2 intf 8 sd_3

intf_6 intf_11

intf_ 4 sd_5 intf_ 9 sd_6

intf_7 intf_12

v1l

intf_ 5 sd_8 intf_10sd_9 \
interface

Figure 1: Structure of domain decomposition

e interface: this structure defines a line segment of the polygonal
boundary for a subdomain.

e vertex: this structure contains information about vertices of the
polygonal boundary.

For example, if you want to decompose the domain into 3-by-3 rectan-
gular subdomains, the decomposition structure can be represented by
nine subdomains (sd_1,...sd_9), twelve interfaces (intf_1,...,intf_12)
and sixteen vertices (v1,...,v16) as in Figure

The mesh generation function (mgf) that returns any decomposition
structure must have the following format:

[subdomains, interfaces, vertices, memberFunc, affine]
= mgfName(param, x, y, idx)

which has the input parameters
e x: n by 2 matrix of training inputs
e y: column vector of length n of training targets

e idx: n by 1 logical mask to indicate the subset of training data
used for learning the hyperparameters.

e param: a structure of the parameters necessary for generating the
structure of domain decomposition.

The first job which mgfName needs to do is to define individual subdo-
mains. A subdomain is polygonal, and its boundary is defined by a set
of vertex coordinates of the polygon. The vertices output value of
mgfName should be a V' x D matrix containing a set of all polygon vertex
coordinates of all subdomains, where V is the total number of vertices
and D is the dimension of the domain. If we have the subdomains in
Figure[T] the vertices should be a 16-by-2 matrix of the sixteen vertices
in two dimensional space.

The definition of subdomains is stored in the first output value of
mgfName, subdomains. The output is of cell array type in Matlab.
Each element of the cell array is of ‘structure’ data type, which contains
the definition of a subdomain. In other words, if sd_i is a structure con-
taining the definition of the ith subdomain (subdomains{i} = sd_i).
The sd_i should have the following elements:

24

User Manual for GPLP Version 1.0

e sd_i.T: arow vector of the indices pointing the vertices in vertices
output value, which corresponds to the polygon vertices of the ith
subdomain boundary.

e sd_i.n: the number of the training inputs inside the polygonal
boundary specified by sd_i.T.

e sd_i.x: sd_i.n by 2 matrix of the training inputs inside the polyg-
onal boundary specified by sd_i.T.

e sd_i.y: column vector of length sd_i.n, containing the training
targets that corresponds to sd_i.x.

e sd_i.hx: a subset of sd_i.x that are used for learning hyperpa-
rameters; this can be obtained by subsetting sd_i.x with the input
parameters idx.

e sd_i.hy: the training targets corresponding to sd_i.hx.

e sd_i.neighbors: aset of indices pointing elements in subdomains,
which corresponds to the subdomains neighboring to sd_i. Its last
element should be the total number of the neighbors. For example,
in Figure[l] sd_5 has four neighbors of sd_2, sd_4, sd_6 and sd_8.
sd_b.neighbors should have the value of [2,4,6,8,4].

The second job performed by mgfName is to define a set of the interfaces
shared by pairs of neighboring subdomains. The second output value of
mgfName is a M-by-1 cell array, containing a set of interfaces. The jth
element of the cell array, denoted by int_j, is of structure data type,
containing the definition of the jth interface (interfaces{j} = int_j).
The int_j should have the following fields:

e int_j.i: the index pointing an element in subdomains output
value, which corresponds to the first one of two neighboring subdo-
mains.

e int_j.j: the index pointing an element in subdomains output
value, which corresponds to the second one of two neighboring sub-
domains (always, int_j.i < int_j.j).

e int_j.x: a 1-by-2 vector of two indices pointing two elements in
vertices output value, which corresponds to two end points of the
line segment defined by intf_j.

In addition, the mgfName stores the indices of the interfaces related to
sd_1i as follows:

e sd_i.int_idx: a row vector of the indices pointing the elements in
interfaces, which corresponds to parts of the polygonal bound-
aries of sd_i. The last element of this row vector is the total number
of the interface indices stored in this row vector. For examples, in
Figure |1} the polygonal boundary of sd_5 consists of four inter-
faces (intf_4, \intf_6, \int_7 and int_9). The sd_5.int_idx
should be [4,6,7,9,4].

Last, the mgfName should return the following Matlab function refer-
ences:

e memberFunc: a membership function to check if data x belongs to
subdomain sd_i. Its usage is idx = memberFunc(x, sd_i) with
parameters

— x: n-by-D matrix of data inputs

User Manual for GPLP Version 1.0 25

5 Conclusion

References

— sd_i: the definition of a subdomain

— idx: n-by-1 column vector of indices pointing the elements in
x, which belongs to sd_i.

e affine: affine transformation that transforms the global coordi-
nates x into the local coordinates in subdomain sd_i. Its usage is
loc = affine(x, sd_i) with parameters

— x: n-by-D matrix of data inputs
— sd_i: the definition of a subdomain

— loc: n-by-D matrix of the local coordinates of x in sd_i; the
local coordinate system can be defined in users’ own ways, but
the range of the local coordinate system should be the same
for every subdomain.

For examples defining a new mesh function, please refer to rectMesh.m
and rectGrid.m at ./mesh directory. In the same directory, you can
also find another documentation regarding the definition of mgf entitled
meshFunction.m.

The GPLP Version 1.0 is a Matlab (or Octave) based software package
that implements several localized computation methods of the Gaussian
process regression problem, including the domain decomposition method
(DDM), two parallel computation versions of DDM, partial independent
conditional (PIC), local probabilistic regression (LPR) and bagging for
Gaussian process regression (BGP). The methods implemented in GPLP
have not been implemented in the general purpose computation toolbox
for Gaussian process (GPML toolbox), so GPLP expects to be a nice com-
plement to GPML. The GPLP also provides two parallel computation codes
of the domain decomposition method, which is expected to solve much
larger scale spatial regression in a timely manner. This documentation
provides several examples to show how to use GPLP toolbox for general
users. It also explains to advanced users how to extend the functions of
this toolbox with computational language interfaces.

Chen, T. and J. Ren (2009). Bagging for Gaussian process regression.
Neurocomputing 72(7-9), 1605-1610.

Kepner, J. (2001). Parallel programming with MatlabMPI. In Proceedings
of the High Performance Embedded Computing (HPEC 2001) work-
shop.

Park, C., J. Z. Huang, and Y. Ding (2011). Domain decomposition ap-
proach for fast gaussian process regression of large spatial data sets.
Journal of Machine Learning Research 12, 1697-1728.

Rasmussen, C. E. and H. Nickisch (2010). Gaussian processes for machine
learning (GPML) toolbox. Journal of Machine Learning Research 11,
3011-3015.

Snelson, E. and Z. Ghahramani (2007). Local and global sparse Gaussian
process approximations. In International Conference on Artifical Intel-
ligence and Statistics 11, pp. 524-531. Society for Artificial Intelligence
and Statistics.

26

User Manual for GPLP Version 1.0

Urtasun, R. and T. Darrell (2008). Sparse probabilistic regression for
activity-independent human pose inference. In IEEFE Conference on
Computer Vision and Pattern Recognition 2008, pp. 1-8.

User Manual for GPLP Version 1.0 27

	GPLP Toolbox
	Installation
	Basic Installation
	Setting Up a Parallel Computation Environment

	Usage and Demonstration
	General Usage
	Case 1: Execution of Domain Decomposition Method with Local Hyperparameters
	Case 2: Execution of Domain Decomposition Method with Global Hyperparameters
	Case 3: Parallel Execution of Domain Decomposition Method in Single-Machine-Multi-Core Environment
	Case 4: Parallel Execution of Domain Decomposition Method in Multi-Machine Environment
	Case 5: Execution of Partial Independent Conditional
	Case 6: Execution of Localized Probabilistic Regression
	Case 7: Execution of Bagging for Gaussian Process Regression

	User Extension of GPLP Toolbox
	Adding a new covariance function
	Adding a new mesh generation function

	Conclusion

